姓名 | 蔡道平 | 学科 | 材料科学与工程 | |
联系方式 | 电话:15260221330 | |||
E-mail: dpcai@fzu.edu.cn | ||||
个人主页: | ||||
个人简历 | 2016.9—至今,福州大学材料科学与工程学院,讲师 2011.9—2016.6,厦门大学萨本栋微米纳米科学技术研究院,博士学位 2007.9—2011.6,厦门大学化学化工学院化学系基地班,学士学位 | |||
荣誉称号 | 2016年福建省优秀博士学位论文 2015年卢嘉锡优秀研究生奖 | |||
教学情况 | 讲授《新能源材料A》、《材料物理性能》课程 | |||
研究领域 | 主要从事电化学储能材料与器件相关领域的研究,包括超级电容器,锂(钠)离子电池以及水系二次电池等。 | |||
科研项目 | 参与国家自然科学基金,主持福建省自然科学基金面上项目、福建省中青年教师教育科研项目等。 | |||
论著成果 | 在Energy Storage Mater.,J. Mater. Chem. A,Chem. Eng. J.,ACS Appl. Mater. Interfaces,Nanoscale,Chem. Commun., Electrochim. Acta,Inorg. Chem.,Ceram. Int.,J. Alloys Compd.,等国际期刊共发表SCI论文50余篇,其中以第一作者/第一通讯作者身份共发表SCI论文35篇,总引用次数超过1600余次。第一作者/第一通讯作者身份发表论文如下: 1. Y. Huang, X. Hu, J. Li, J. Zhang, D. Cai*, B. Sa, H. Zhan* and Z. Wen*, Rational construction of heterostructured core-shell Bi2S3@Co9S8 complex hollow particles toward high-performance Li- and Na-ion storage, Energy Storage Mater., 2020, 29, 121–130. 2. B. Fei, Z. Yao, D. Cai*, J. Si, Q. Wang*, Q. Chen, B. Sa, K. Peng and H. Zhan*, Construction of sugar gourd-like yolk-shell Ni–Mo–Co–S nanocage arrays for high-performance alkaline battery, Energy Storage Mater., 2020, 25, 105–113. 3. L. Zhu, Z. Yao, T. Liu, C. Xu, D. Cai*, B. Sa, Q. Chen* and H. Zhan, A lightweight and low-cost electrode for lithium-ion batteries derived from paper towel supported MOF arrays, Chem. Commun., 2020, doi.org/10.1039/D0CC01599G. 4. X. Zhu, D. Cai, Z. Cui, Q. Wang and H. Zhan, Embedded ZnO nanoparticles in N-doped carbon nanoplate arrays grown on N-doped carbon paper as low-cost and lightweight electrodes for high-performance lithium storage, Ceram. Int., 2020, doi.org/10.1016/j.ceramint.2020.04.082. 5. Z. Yao, D. Cai*, Z. Cui, Q. Wang* and H. Zhan, Strongly coupled zinc manganate nanodots and graphene composite as an advanced cathode material for aqueous zinc ion batteries, Ceram. Int., 2020, 46, 11237-11245. 6. J. Miao, D. Cai, J. Si, Q. Wang and H. Zhan, Multi-component hierarchical hollow Co–Mo–O nanocages anchored on reduced graphene oxide with strong interfacial interaction for lithium-ion batteries, J. Alloys Compd., 2020, 828, 154379. 7. Y. Liu, W. Wang, Q. Chen, C. Xu, D. Cai* and H. Zhan*, Resorcinol-formaldehyde resin-coated Prussian Blue core-shell spheres and their derived unique yolk-shell FeS2@C spheres for lithium-ion batteries, Inorg. Chem., 2019, 58, 1330−1338. 8. M. Yi, C. Zhang, C. Cao, C. Xu, B. Sa, D. Cai* and H. Zhan*, MOF-derived hybrid hollow submicrospheres of nitrogen-doped carbon-encapsulated bimetallic Ni-Co-S nanoparticles for supercapacitors and lithium ion batteries, Inorg. Chem., 2019, 58, 3916−3924. 9. J. Zhang, Z. Liu, D. Cai* and H. Zhan, Metal-organic framework-engaged synthesis of multicomponent MoO2@CoO-CoMoO4-NC hybrid nanorods as promising anode materials for lithium-ion batteries, Mater. Lett., 2019, 254, 129−132. 10. T. Liu, W. Wang, M. Yi, Q. Chen, C. Xu, D. Cai* and H. Zhan*, Metal-organic framework derived porous ternary ZnCo2O4 nanoplate arrays grown on carbon cloth as binder-free electrodes for lithium-ion batteries, Chem. Eng. J., 2018, 354, 454−462. 11. M. Yi, A. Wu, Q. Chen, D. Cai* and H. Zhan*, In situ confined conductive nickel cobalt sulfoselenide with tailored composition in graphitic carbon hollow structure for energy storage, Chem. Eng. J., 2018, 351, 678−687. 12. L. Quan, T. Liu, M. Yi, Q. Chen, D. Cai* and H. Zhan*, Construction of hierarchical nickel cobalt selenide complex hollow spheres for pseudocapacitors with enhanced performance, Electrochim. Acta, 2018, 281, 109−116. 13. Q. Chen, J. Miao, L. Quan, D. Cai* and H. Zhan*, Bimetallic CoNiSx nanocrystallites embedded in nitrogen-doped carbon anchored on reduced graphene oxide for high-performance supercapacitors. Nanoscale, 2018, 10, 4051−4060. 14. Y. Huang, L. Quan, T. Liu, Q. Chen, D. Cai* and H. Zhan*, Construction of MOF-derived hollow Ni-Zn-Co-S nanosword arrays as binder-free electrodes for asymmetric supercapacitors with high energy density, Nanoscale, 2018, 10, 14171−14181. 15. D. Cai, B. Qu* and H. Zhan*, Porous NaTi2(PO4)3 nanoparticles coated with a thin carbon layer for sodium-ion batteries with enhanced rate and cycling performance, Mater. Lett., 2018, 218, 14−17. 16. D. Cai*, X. Yang, B. Qu and T. Wang*, Comparison of the electrochemical performance of iron hexacyanoferrate with high and low quality as cathode materials for aqueous sodium-ion batteries, Chem. Commun., 2017, 53, 6780−6783. 17. Y. Zhang, M. Li, Q. Chen, D. Cai* and H. Zhan*, Dendritic unzipped carbon nanofibers enable uniformly loading of surfactant-free Pd nanoparticles for electroanalysis of small biomolecules, J. Mater. Chem. B, 2017, 5, 2252−2264. 18. D. Cai, B. Qu, Q. Li, H. Zhan* and T. Wang*, Reduced graphene oxide uniformly anchored with ultrafine CoMn2O4 nanoparticles as advanced anode materials for lithium and sodium storage, J. Alloys Compd., 2017, 716, 30−36. 19. S. Chen, D. Cai*, X. Yang, Q. Chen, H. Zhan*, B. Qu and T. Wang*, Metal-organic frameworks derived nanocomposites of mixed-valent MnOx nanoparticles in-situ grown on ultrathin carbon sheets for high-performance supercapacitors and lithium-ion batteries, Electrochim. Acta, 2017, 256, 63−72. 20. S. Chen, Q. Chen, D. Cai* and H. Zhan*, Defect-mediated synthesis of Pt nanoparticles uniformly anchored on partially-unzipped carbon nanofibers for electrochemical biosensing, J. Alloys Compd., 2017, 709, 304−312. 21. D. Cai*, H. Zhan* and T. Wang, MOF-derived porous ZnO/ZnFe2O4 hybrid nanostructures as advanced anode materials for lithium ion batteries, Mater. Lett., 2017, 197, 241−244. 22. Q. Chen, D. Cai* and H. Zhan*, Interconnected Ni-Co sulfide nanosheet arrays grown on nickel foam as binder-free electrodes for supercapacitors with high areal capacitance, J. Alloys Compd., 2017, 721, 205−212. 23. Q. Chen, D. Cai* and H. Zhan*, Construction of reduced graphene oxide nanofibers and cobalt sulfide nanocomposite for pseudocapacitors with enhanced performance, J. Alloys Compd., 2017, 706, 126−132. 24. D. Cai, B. Liu, D. Wang, L. Wang, Y. Liu, L. Wang, Y. Liu, B. Qu, X. Duan, Q. Li and T. Wang, Rational synthesis of metal–organic framework composites, hollow structures and their derived porous mixed metal oxide hollow structures. J. Mater. Chem. A, 2016, 4, 183–192. 25. D. Cai, D. Wang, C. Wang, B. Liu, L. Wang, Y. Liu, Q. Li and T. Wang, Construction of desirable NiCo2S4 nanotube arrays on nickel foam substrate for pseudocapacitors with enhanced performance, Electrochim. Acta, 2015, 151, 35–41.(高被引论文) 26. D. Cai, D. Wang, H. Huang, X. Duan, B. Liu, L. Wang, Y. Liu, Q. Li and T. Wang, Rational synthesis of ZnMn2O4 porous spheres and graphene nanocomposite with enhanced performance for lithium-ion batteries, J. Mater. Chem. A, 2015, 3, 11430–11436. 27. D. Cai, T. Yang, D. Wang, X. Duan, B. Liu, L. Wang, Y. Liu, Q. Li and T. Wang, Tin dioxide dodecahedral nanocrystals anchored on graphene sheets with enhanced electrochemical performance for lithium-ion batteries, Electrochim. Acta, 2015, 159, 46–51. 28. D. Cai, B. Liu, D. Wang, Y. Liu, L. Wang, H. Li, C. Wang, Q. Li and T. Wang, Facile hydrothermal synthesis of hierarchical ultrathin mesoporous NiMoO4 nanosheets for high performance supercapacitors, Electrochim. Acta, 2014, 115, 358–363. 29. D. Cai, D. Wang, Y. Liu, L. Wang, H. Li, Y. Wang, C. Wang, Q. Li and T. Wang, Enhanced performance of supercapacitors with ultrathin mesoporous NiMoO4 nanosheets, Electrochim. Acta, 2014, 125, 294–301. 30. D. Cai, D. Wang, B. Liu, L. Wang, Y. Liu, H. Li, Y. Wang, Q. Li and T. Wang, Three-dimensional Co3O4@NiMoO4 core/shell nanowire arrays on Ni foam for electrochemical energy storage, ACS Appl. Mater. Interfaces, 2014, 6, 5050−5055. 31. D. Cai, H. Huang, D. Wang, B. Liu, L. Wang, Y. Liu, Q. Li and T. Wang, High-performance supercapacitor electrode based on the unique ZnO@Co3O4 core/shell heterostructures on nickel foam, ACS Appl. Mater. Interfaces, 2014, 6, 15905−15912. 32. D. Cai, B. Liu, D. Wang, L. Wang, Y. Liu, H. Li, Y. Wang, Q. Li and T. Wang, Construction of unique NiCo2O4 nanowire@CoMoO4 nanoplate core/shell arrays on Ni foam for high areal capacitance supercapacitors, J. Mater. Chem. A, 2014, 2, 4954–4960. 33. D. Cai, S. Xiao, D. Wang, B. Liu, L. Wang, Y. Liu, H. Li, Y. Wang, Q. Li and T. Wang, Morphology controlled synthesis of NiCo2O4 nanosheet array nanostructures on nickel foam and their application for pseudocapacitors, Electrochim. Acta, 2014, 142, 118–124. 34. D. Cai, T. Yang, B. Liu, D. Wang, Y. Liu, L. Wang, Q. Li and T. Wang, A nanocomposite of tin dioxide octahedral nanocrystals exposed to high-energy facets anchored onto graphene sheets for high performance lithium-ion batteries, J. Mater. Chem. A, 2014, 2, 13990–13995. 35. D. Cai, D. Wang, B. Liu, Y. Wang, Y. Liu, L. Wang, H. Li, H. Huang, Q. Li and T. Wang, Comparison of the electrochemical performance of NiMoO4 nanorods and hierarchical nanospheres for supercapacitor applications, ACS Appl. Mater. Interfaces, 2013, 5, 12905−12910. 主要其他作者身份发表论文如下: 1. B. Liu, D. Cai, Y. Liu, H. Li, C. Weng, G. Zeng, Q. Li and T. Wang, High-performance room-temperature hydrogen sensors based on combined effects of Pd decoration and Schottky barriers, Nanoscale, 2013, 5, 2505–2510. 2. B. Liu, D. Cai, Y. Liu, D. Wang, L. Wang, W. Xie, Q. Li and T. Wang, Strongly coupled hybrid nanostructures for selective hydrogen detection-understanding the role of noble metals in reducing cross-sensitivity,Nanoscale, 6, 2014, 4758–5764. 3. B. Liu, D. Cai, Y. Liu, D. Wang, L. Wang, Y. Wang, H. Li, Q. Li and T. Wang, Improved room-temperature hydrogen sensing performance of directly formed Pd/WO3 nanocomposite, Sensors and Actuators B,193, 2014, 28–34. 4. C. Wang, D. Cai, B. Liu, H. Li, D. Wang, Y. Liu, L. Wang, Y. Wang, Q. Li and T. Wang, Ethanol-sensing performance of tin dioxide octahedral nanocrystals with exposed high-energy {111} and {332} facets, J. Mater. Chem. A, 2014, 2, 10623–10628. 5. D. Wang, D. Cai, H. Huang, B. Liu, L. Wang, Y. Liu, H. Li, Y. Wang, Q. Li and T. Wang, Non-enzymatic electrochemical glucose sensor based on NiMoO4 nanorods, Nanotechnology, 2015, 26, 145501. 6. H. Li, B. Liu, D. Cai, Y. Wang, Y. Liu, L. Mei, L. Wang, D. Wang, Q. Li and T. Wang, High-temperature humidity sensors based on WO3-SnO2 composite hollow nanospheres, J. Mater. Chem. A, 2014, 2, 6854–6862. 7. Y. Wang, B. Liu, D. Cai, H. Li, Y. Liu, D. Wang, L. Wang, Q. Li and T. Wang, Room-temperature hydrogen sensor based on grain-boundary controlled Pt decorated In2O3 nanocubes, Sensors and Actuators B, 201, 2014, 351–359. 8. L. Wang, H. Huang, S. Xiao, D. Cai, Y. Liu, B. Liu, D. Wang, C. Wang, H. Li, Y. Wang, Q. Li and T. Wang, enhanced sensitivity and stability of room-temperature NH3 sensors using core−shell CeO2 nanoparticles@cross-linked PANI with p-n heterojunctions, ACS Appl. Mater. Interfaces, 2014, 6, 14131−14140. |
版权所有:福州大学材料科学与工程学院
地址: 福建省福州市福州地区大学新区学园路2号 邮编: 350108 电话:0591-22866539
CopyRight 2011-2021 By All Rights Reserved.