杨程凯

发布者:
发布时间:
2019-09-06
浏览量:


姓名

杨程凯

学科

材料科学与工程

联系方式

Email:

1058360340@qq.com

个人主页:

https://www.x-mol.com/people/yangchengkai

地址:

福州大学阳光科技楼南909

个人简历

2010.09 - 2014.07 天津大学 理学院 应用化学 理学学士

2014.09 - 2019.07  北京大学 化学与分子工程学院 理学博士

2019.08至今 福州大学 副教授

研究领域

研究内容包括锂离子电池,正极材料,锌离子电池,固态电解质,电化学,第一性原理与分子动力学计算,机器学习。以第一或者通讯作者在Adv.   Mater., Energy Stor. Mater., Electrochemical Energy Reviews, Adv. Funct.   Mater., ACS Energy Lett, JMCA, Small, J. Power Sources, J Energy Chem., ACS   Appl. Mater. Interfaces, Chem. Eng. J.等国际期刊上发表SCI论文60余篇。

研究生课题设置模式如下:

()离子电池正极/电解质,锌离子电池正极/电解质,固态/凝胶电解质,等上述研究内容以及其中细分内容。

计算或者理论,机器学习或者数据驱动的模型建立及设计,Ai   For Science

如何做取决于同学们的基础情况。

科研在于思考与探索,欢迎乐于思考与探索的同学加入学习,共同研究,如果对相关领域有深入理解可以不限于上述研究。

学术兼职

功能材料学会年会组委会成员及秘书,福建省硅酸盐学会理事。

Frontiers in ChemistryCoatingsJournal   of Renewable Materials期刊客座编辑。

AngewAMAEM Adv. Funct. Mater.Chem.   Eng. J., Energy Storage Materials, Adv. Science等期刊审稿人

主持项目

主持包括国家自然科学基金、福建省自然科学基金、福州大学科研启动项目、山西省科技厅重点项目及企业横向项目等多个项目。

论著成果

近三年发表离子电池、储能相关文章:


1. C.K. Yang   et al. A halide-oxide composite solid-state electrolyte for enhancing ionic   conductivity by promoting interfacial healing through low-temperature heat   treatment, Journal of Solid State Electrochemistry, 1-11, 2025

2. C.K. Yang   et al. Möbius Solvation Structure for ZincIon Batteries, Advanced Materials,   2415373, 2025

3. C.K. Yang   et al. The Leverage of Ether CH Bond Shielding Strategy for Antioxidative   Electrolyte in Lithium-ion Batteries, Journal of Materials Chemistry A,   2025

4. C.K. Yang   et al. Suppressing Intergranular Cracking with Near-Surface Layer Regulation   for Electrochemical-Thermal Stabilization of LiCoO2, Materials Horizons,   2025

5. C.K. Yang   et al. Rational Hierarchical Micellar Gel-Electrolytes with Synergistic   Hydrophobic-Hydrophilic Integration for Dendrite-Free Zinc-Ion Batteries, Journal   of Materials Chemistry A, 2025

6. C.K. Yang   et al. Activating discharge and inhibiting self-corrosion by adding indium to   the anode of Mgair   battery, Nanoscale, 2025

7. C.K. Yang et   al. Redox Active vs Redox Neutral in Ru/Pd-Catalyzed Sulfonylation:   Theoretical Insights into StructureActivity Relationship between Metal   Centers and Regio-Selectivity, The Journal of Organic Chemistry 89   (24), 18131-18141, 2024

8. C.K. Yang   et al. Selective and Bifunctional Catalytic Electrochemical Conversion of   Organosulfide Molecule by HighEntropy Carbides, Advanced Functional   Materials 34 (49), 2409450, 4, 2024

9. C.K. Yang   et al. Perfluorinated Amines: Accelerating Lithium Electrodeposition by   Tailoring Interfacial Structure and Modulated Solvation for HighPerformance   Batteries, Small 20 (44), 2404614

10. C.K.   Yang et al. Bridging Atomic and Macroscopic Perspectives   on Heteroepitaxial Growth in Lithium Metal Anodes, ACS Energy Letters   9 (10), 5215-5224,1, 2024

11. C.K.   Yang et al. Layered oxide cathodes: A comprehensive   review of characteristics, research, and development in lithium and sodium   ion batteries, Carbon Neutralization 3 (5), 832-856, 6, 2024

12. C.K.   Yang et al. Enhancing the Cathode/Electrolyte interface   in Ni-Rich Lithium-Ion batteries through homogeneous oxynitridation enabled   by NO3   dominated clusters, Chemical Engineering Journal 494, 153001

13. C.K.   Yang et al. Upgrading Gel Electrolytes Through   ElectrostaticInduced   DualSalt   Paradigm for Superior ZnIon Battery Performance, Small 20   (38), 2400390, 5, 2024

14. C.K.   Yang et al. Perfluorinated Amines: Accelerating Lithium   Electrodeposition by Tailoring Interfacial Structure and Modulated Solvation   for High-Performance Batteries, small, 2024, 10.1002/smll.202404614.

15. C.K.   Yang et al., Batteries & Supercaps 2024,   e202400278. https://doi.org/10.1002/batt.202400278

16. C.K.   Yang et al. Congener-derived template to construct   lithiophilic organic-inorganic layer/interphase for high volumetric capacity   dendrite-free Li metal batteries, Chinese Chemical Letters, 35, 3,   108451, 2024.

17. C.K.   Yang et al. Highly-chlorinated inert and robust   interphase without mineralization of oxide enhancing high-rate Li metal   batteries, Chinese Chemical Letters, 35, 6, 108814, 2024.

18. C.K.   Yang et al. Constructing localized-anion gel-electrolyte   with poly (ethyl acrylate/acrylic acid lithium) for flame-retardant lithium   metal batteries, Journal of Solid State Electrochemistry, 28, 1,   273-281, 2024

19. C.K.   Yang et al. Boosting ZincIon Batteries with Innovative Ternary   Electrolyte for Enhanced Interfacial Electrochemistry and TemperatureResilient   Performance, Advanced Functional Materials, 34, 4, 2310825, 2024

20. C.K.   Yang et al. MOF-derived Co3O4/ZrO2 mesoporous octahedrons   with optimized charge transfer and intermediate conversion for efficient CO2   photoreduction, Science China Materials, 67, 2, 588-597, 2024.

21. C.K.   Yang et al. SelfAdaptive Hierarchical Hosts with   Switchable Repulsive Shielding for DendriteFree ZincIon Batteries, Advanced Energy   Materials, 2304535, 2024

22. C.K.   Yang et al. Dynamic Interfacial Protection via   Molecularly Tailored Copolymer for Durable Artificial Solid Electrolyte   Interphase in Lithium Metal Batteries, Advanced Functional Materials,   2403021, 2024

23. C.K.   Yang et al. Upgrading Gel Electrolytes Through   ElectrostaticInduced   DualSalt   Paradigm for Superior ZnIon Battery Performance, Small,   2400390, 2024

24. C.K.   Yang et al. HT-NMR Studies of the BeF   Coordination Structure in FNaBe and FLiBe Mixed Salts, JACS Au, 2024

25. C.K.   Yang et al. Enhancing ZnMetal Anode Stability: Key Effects of   Electrolyte Additives on IonShieldLike Electrical Double Layer and Stable   Solid Electrolyte Interphase, Advanced Functional Materials, 2314347,   2024

26. C.K.   Yang et al. PorphyrinThiophene Based Conjugated Polymer   Cathode with High Capacity for LithiumOrganic Batteries, Angewandte Chemie   International Edition, e202317135, 2024

27. C.K.   Yang et al. Enhancing the Cathode/Electrolyte interface   in Ni-Rich Lithium-Ion batteries through homogeneous oxynitridation enabled   by NO3   dominated clusters, Chemical Engineering Journal, 153001,2024

28. Chengkai   Yang*, et al. Ultrathin Composite Li Electrode for High-Performance Li   Metal Batteries: A Review from Synthetic Chemistry. Adv. Funct.   Mater. 2023, 2213648.  

29. Chengkai   Yang*, et al. The Anion-Dominated Dynamic Coordination Field in the   Electrolytes for High-Performance Lithium Metal Batteries, Energy Storage   Materials, Volume 55, 2023, Pages 773-781.

30. Chengkai   Yang*, et al. Air-Stable Lithium Metal Anodes: A Perspective of Surface   Engineering from Different Dimensions, ACS Energy Letters 8 (10),   4441-4464

31. Chengkai   Yang*, et al. Terminal Group-Oriented Self-Assembly to Controllably   Synthesize a Layer-by-Layer SnSe2 and MXene Heterostructure for   Ultrastable Lithium Storage. Small 2023.

32. Chengkai Yang*, et al. Stable zinc anode with   ionic conductive interface layer for high performance aqueous zinc-ion   batteries, Chemical Engineering Journal 474, 145981

33. Chengkai Yang*, et al. Spontaneous Desaturation of   the Solvation Sheath for HighPerformance   AntiFreezing ZincIon GelElectrolyte,   Small, 2301569

34. Chengkai Yang*, et al. Highly-chlorinated inert and   robust interphase without mineralization of oxide enhancing high-rate Li   metal batteries, Chinese Chemical Letters, 108814

35. Chengkai Yang*, et al. Congener-derived template to   construct lithiophilic organic-inorganic layer/interphase for high volumetric   capacity dendrite-free Li metal batteries, Chinese Chemical Letters 35   (3), 108451

36. Chengkai   Yang*, et al. Localized gelation cellulose separators enable dendrite-free   anodes for future zinc-ion batteries. J.   Mater. Chem. A, 2023,11, 6522-6529.

37. Chengkai   Yang*, et al. Suppressing Side Reaction and Dendritic Growth via Interfacial   Cyclization Molecule for Stable Zn Metal Anodes, ACS Applied Energy   Materials 7 (1), 61-71

38. Chengkai   Yang*, et al. Constructing localized-anion gel-electrolyte with poly (ethyl   acrylate/acrylic acid lithium) for flame-retardant lithium metal batteries, Journal   of Solid State Electrochemistry, 1-9

39. Chengkai   Yang*, et al. Construction of ion-conductive dual-channels by   P(EA-co-AALi)-based gel electrolytes for high-performance lithium metal   batteries, Journal of Solid State Electrochemistry, 1-7

40. Chengkai   Yang*, et al. A Review of Solid Electrolyte Interphase (SEI) and Dendrite   Formation in Lithium Batteries. Electrochem. Energy Rev. 6, 7   (2023).

41. Chengkai   Yang*, et al. In situ modification by graphidyne as interlayer in titanium   dioxide thin film/platinum for water splitting photocatalysis. Int. J.   Hydrog. Energy, 2022.

42. Chengkai   Yang*, et al. Regulation of Zinc Interface by Maltitol for Long-Life   Dendrite-free Aqueous Zinc Ion BatteriesJournal of Electronic Materials,   2022, 51, 4763-4771

43. Chengkai   Yang*, et al. Advanced Research on Energy Storage Materials and Devices, Coatings   2022, 12(7), 971; https://doi.org/10.3390/coatings12070971

44. Chengkai   Yang*, et al. Utilizing an Oxygen-Rich Interface by Hydroxyapatite to   Regulate the Linear Diffusion for the Stable Solid-State Electrolytes, ACS   Appl. Mater. Interfaces 2022, 14, 29, 33392–33399

45. Chengkai   Yang*, et al. Rapid internal conversion harvested in Co/Mo dichalcogenides   hollow nanocages of polysulfides for stable Lithium-Sulfur batteries, Chem.   Eng. J. Volume 434, 2022, 134498.

46. Chengkai   Yang, et al. Ultrathin Aluminum Nanosheets Grown on Carbon Nanotubes for High   Performance Lithium Ion Batteries. Adv. Funct. Mater. 2021,   2109112.

47. Chengkai   Yang*, et al. Thiophene functionalized porphyrin complexes as novel bipolar   organic cathodes with high energy density and long cycle life, Energy   Storage Materials, Volume 46, 2022, Pages 252-2587.

48. Chengkai   Yanget   al. Hexaoxacyclooctadecane induced interfacial engineering to achieve   dendrite-free Zn ion batteries. Energy Storage Materials, 2021.

49. Chengkai   Yanget   al. Flame-retardant composite gel polymer electrolyte with a dual   acceleration conduction mechanism for lithium ion batteries. Chem. Eng.   J. 422, 15 October 2021, 130526.

50. Chengkai   Yanget   al. Bulk and surface degradation in layered Ni-rich cathode for Li ions   batteries: Defect proliferation via chain reaction mechanism, Energy   Storage Materials, 2021, 35: 62-69.

51. Chengkai   Yang, et al. In situ TEM revealing the effects of dislocations on lithium-ion   migration in transition metal dichalcogenides, Journal of Energy   Chemistry, 58, 2021, 280-284.