国家级教学名师:于岩
福建省特殊支持“双百计划”科技创新领军人才:于岩
国家博士后海外引才专项(国家海优B):郑云
福建省引才“百人计划”:颜蔚、郑云
福建省“闽江学者”特聘教授(5人):程年才、郭智勇、肖方兴、罗中箴、郑云
福建省闽江青年学者:萨百晟
福建省“雏鹰计划”:庄泽文
福建省高层次人才A类(1人):于岩
福建省高层次人才B类(3人):肖方兴、程年才、颜蔚
福建省高层次人才C类(39人):陈孔发、高旻、裴家杰、陈鸿铭、黄瀚林、李留义、罗中箴、吕晓林、吴明懋、吴宇鑫、杨程凯、赵纯林、郑晶莹、庄赞勇、刘尧、陈飞飞、林起浪、陈俊锋、靳艳巧、温翠莲、吴悦、王斌、左银泽、雷杰、万宇驰、陈奇俤、张夏兰、余文贝、郑云、张超琦、刘明权、廖灿、庄泽文、萨百晟、孙凯安、钟升红、肖建华、胡策军、廖庆
嘉锡学者(1人):林起浪
旗山学者(13人):陈俊锋、萨百晟、庄赞勇、吴啸、邓平、陈孔发、钟升红、高旻、裴家杰、刘尧、张超琦、孙凯安、朱水洪
福建省委教育科研类引进生(20人):郑晶莹、杨程凯、黄瀚林、吕晓林、吴明懋、陈鸿铭、吴悦、廖庆、庄泽文、胡策军、万宇驰、廖灿、肖建华、蒋一东、郑云鹏、晏豪、吴清宸、谈鑫、郑琦正、吴军茹
朱水洪,副教授,旗山学者(国内引进),硕士生导师。主要从事软物质功能材料、离子电子器件、天然生物高分子、水凝胶弹性体及其复合材料的设计与制备等研究。在国际学术期刊上已发表论文 25 篇,累计被引 1200 余次,H指数 14。以第一作者或通讯作者身份发表论文 8 篇,其中包括Advanced Materials (2篇)、Nature Communications、Advanced Science、Small Methods等(IF>10的论文5篇,论文累计影响因子>120)。主持国家自然科学基金青年学生基础研究项目。
(欢迎有材料、物理、化学、化工等专业背景的学生报考硕士研究生!)
2025~至今 福州大学材料科学与工程学院 副教授
2023~2024 新加坡南洋理工大学材料科学与工程学院 国家公派留学
2020~2024 厦门大学物理科学与技术学院物理系 博士
2016~2019 厦门大学物理科学与技术学院物理系 硕士
2012~2016 福州大学材料科学与工程学院金属材料系 本科
科研项目科研经历
1.福州大学“旗山学者”启动资金,2025~2029,30万,主持。
2. 国家自然科学基金青年学生基础研究项目(博士研究生),生物基离子二极管的开发及其在柔性离电器件中的应用,2024~2025,30万,主持。
3.厦门大学龙岩产教融合研究院科研实践项目,2022.07~2022.08,2万,主持。
科研成果科研经历
First or corresponding author:
1. Zhu, S., Wang, S., Huang. Y., Tang, Q., Fu, T., Su, R., Fan, C., Xia, S., Lee, P. S.*, Lin, Y.* Bioinspired structural hydrogels with highly ordered hierarchical orientations by flow-induced alignment of nanofibrils. Nat. Commun. 15, 118 (2024).(第一作者,中科院一区TOP,IF=16.6)
2. Zhu, S.#, Chen, S.#, Jiang, F., Fu, C., Fu, T., Meng, Z., Lin, Y.* & Lee, P. S.*, Biopolymeric Ionotronics Based on Biodegradable Wool Keratin. Adv. Mater. 2414191 (2024).(共同一作,中科院一区TOP,IF=29.4)
3. Zhu, S., Zeng, W., Meng, Z., Luo, W., Ma, L., Li, Y., Lin, C., Huang, Q., Lin, Y.* & Liu, X. Y.* Using wool keratin as a basic resist material to fabricate precise protein patterns. Adv. Mater. 31, 1900870 (2019).(第一作者,中科院一区TOP,IF=29.4)
4. Zhu, S., Zhou, Q., Yi, J., Xu, Y., Fan, C., Lin, C., Wu, J. & Lin, Y.* Using Wool Keratin as a Structural Biomaterial and Natural Mediator to Fabricate Biocompatible and Robust Bioelectronic Platforms. Adv. Sci. 10, 2207400 (2023).(第一作者,中科院一区TOP,IF=15.1)
5. Sun, X.#, Zhu, S.#, He, D., Lin, Y.*, Ye, T.* Using highly water-stable wool keratin/CsPbBr3 nanocrystals as a portable amine-responsive fluorescent test strip for onsite visual detection of food freshness. J. Colloid Interface Sci. 669, 295 (2024). (共同一作,中科院一区TOP,IF=9.9)
6. Zhu, S., Tang, Y., Lin, C., Liu, X. Y. & Lin, Y.* Recent advances in patterning natural polymers: from nanofabrication techniques to applications. Small Methods 5, 2001060 (2021).(第一作者,中科院二区SCI,IF=12.4)
7. Zhu, S., Wang, D., Li, M., Zhou, C., Yu, D. & Lin, Y.* Recent advances in flexible and wearable chemo-and bio-sensors based on two-dimensional transition metal carbides and nitrides (MXenes). J. Mater. Chem. B 10, 2113-2125 (2022).(第一作者,中科院三区SCI,IF=7.0)
8. Zhu, S., Luo, W., Zeng, W., Lin, Y.* & Liu, X. Y.* Preparation of free-standing micropatterned keratin films by soft lithography. Acta Chim. Sin. 77, 533 (2019).(第一作者,中科院四区SCI,IF=2.5)
主要研究课题
|
1.流体诱导排列的方法制备各向异性结构水凝胶 受天然结构材料的启发,作者利用纳米原纤维的流动诱导取向,开发了具有高度有序层级排列结构的各向异性纤维水凝胶。在剪切流和拉伸流的协同作用下,聚合物链沿着注射和拉伸的方向排列,阐述了高分子聚合物多尺度强化和增韧机制,为基于简单模块的软材料结构的设计和开发提供了一个全新的发展方向。Zhu, S., et al. Nat. Commun. 15, 118 (2024). |
|
2.天然材料构建可降解离子电子器件 通过调节pH至等电点以下或以上,蛋白质分子分别获得正电荷或负电荷,从而能够实现利用单一组分的生物高分子合成离子异质结,这一过程是通过混合熵驱动的离子扩散实现的。该离子电子器件表现出卓越的整流特性,并且在体外条件和自然环境下都可以有效地降解,为环保型离子电子器件的生产提供了有希望的途径。Zhu, S., et al. Adv. Mater. 31, 2414191 (2024). |
|
3.角蛋白作为基本抗蚀材料制备高精度微结构 通过简单的生物化学修饰赋予了羊毛角蛋白的光敏特性,成功开发了新型羊毛角蛋白水基光刻胶,在没有显著改变蛋白质结构和功能的前提下,对羊毛角蛋白进行改性,结合传统光刻技术,成功制备出各种图形的高精度蛋白质微结构,在整个光刻工艺中不需要使用有毒、昂贵的溶剂和显影剂,也不需要复杂的光刻步骤、严苛的操作条件和昂贵的设备。Zhu, S., et al. Adv. Mater. 31, 1900870 (2019). |
|
4.生物基柔性传感器用于构建智能人机交互系统 利用天然蛋白中富含的功能氨基酸,对碳纳米管进行分散,开发了一种生物兼容的导电墨水,基于该生物基导电墨水开发了一种高性能的凝胶柔性传感单元,并将其应用于智能人机交互界面中,开发了智能人机交互系统,实现灵巧的机械臂操纵,在此基础上可以进行简单的纳米合成实验,所制备的纳米产物与人工合成的产物基本一致。Zhu, S., et al. Adv. Sci. 10, 2207400 (2023). |
Cooperative publications:
1. Xia, S., Lu, Q., Fan, C., Zhu,S., Wang, S., Wang, H., Pan, Y., Lin, Y.* Using a Functional Wool Keratin Photoresist to Build Iridescent and Fluorescent 3D Micro‐Pattern for Dual‐Mode Optical Anti‐Counterfeiting. Small. 2502166 (2025).
2. Sun, X., Zhu, S., Fan, C., He, Lin, Y.*, Ye, T.* Solvent-engineered time-dependent hydrochromic perovskite nanocrystals in wool keratin for multi-level encryption with distinguishable temporal keys. Chem. Eng. J. 163778 (2025).
3. Hu, T., Lee, P., Huang, P., Ong, A., Yu, J., Zhu, S., Jiang, Y., Zhang, Z., Reches, M., Lee, P. S.* Promoting piezoelectricity in amino acids by fluorination. Adv. Mater. 37, 2413049 (2025).
4. Yu, D.#, Yi, J.#, Zhu, S., Tang, Y., Huang, Y., Lin, D., Lin, Y.* Hofmeister effect-assisted facile one-pot fabrication of double network organohydrogels with exceptional multi-functions. Adv. Funct. Mater. 2307566 (2024).
5. Zhang, Y., Wang, X., Zhu, S., Wang, L., Jiang, J., Chen, J., Liu. X. Y., Serum albumin hydrogels designed by protein Re-association for self-powered intelligent interactive systems. Energy Storage Materials 67, 103266 (2024).
6. Zhang, L., Hu, F., Zhu, S., Lin, Y., Meng, Z., Yu, R. & Liu, X. Y. Strain Sensors: Meso‐Reconstruction of Wool Keratin 3D “Molecular Springs” for Tunable Ultra‐Sensitive and Highly Recovery Strain Sensors. Small 16, 2070136 (2020).
7. Luo, W., Zhu, S., Lin, Y. & Liu, X. Y. Preparation of Crack-free Inverse-opal Films by Template/Matrix Co-assembly. Acta Chim. Sin. 75, 1010 (2017).
8. Ma, L., Wu, R., Patil, A., Zhu, S., Meng, Z., Meng, H., Hou, C., Zhang, Y., Liu, Q. & Yu, R. Full‐textile wireless flexible humidity sensor for human physiological monitoring. Adv. Funct. Mater. 29, 1904549 (2019).
9. Wu, R., Liu, S., Lin, Z., Zhu, S., Ma, L. & Wang, Z. L. Industrial fabrication of 3D braided stretchable hierarchical interlocked fancy‐yarn triboelectric nanogenerator for self‐powered smart fitness system. Adv. Energy Mater. 12, 2201288 (2022).
10. Li, Q., Wang, X., Xiong, X., Zhu, S., Meng, Z., Hong, Y., Lin, C., Liu, X. & Lin, Y. Graphene-supported biomimetic catalysts with synergistic effect of adsorption and degradation for efficient dye capture and removal. Chin. Chem. Lett. 31, 239-243 (2020).
11. Pan, Y., Qiu, W., Li, Q., Zhu, S., Lin, C., Zeng, W., Xiong, X., Liu, X. Y. & Lin, Y. Assembling Two‐Phase Enzymatic Cascade Pathways in Pickering Emulsion. ChemCatChem 11, 1878-1883 (2019).
12. Wu, R., Ma, L., Patil, A., Hou, C., Zhu, S., Fan, X., Lin, H., Yu, W., Guo, W. & Liu, X. Y. All-textile electronic skin enabled by highly elastic spacer fabric and conductive fibers. ACS Appl. Mater. Interfaces 11, 33336-33346 (2019).
13. Zeng, W., Yu, D., Tang, Y., Lin, C., Zhu, S., Huang, Y., Lin, Y., Liu, X. Y. & Wu, C. Wool keratin photolithography as an eco-friendly route to fabricate protein microarchitectures. ACS Appl. Bio Mater. 3, 2891-2896 (2020).
14. Shi, C., Lan, J., Wang, J., Zhang, S., Lin, Y., Zhu, S., Stegmann, A. E., Yu, R., Yan, X. & Liu, X. Y. Flexible and insoluble artificial synapses based on chemical cross‐linked wool keratin. Adv. Funct. Mater. 30, 2002882 (2020).
15. Ma, L., Zhou, M., Wu, R., Patil, A., Gong, H., Zhu, S., Wang, T., Zhang, Y., Shen, S. & Dong, K. Continuous and scalable manufacture of hybridized nano-micro triboelectric yarns for energy harvesting and signal sensing. ACS nano 14, 4716-4726 (2020).
16. Ma, L., Liu, Q., Wu, R., Meng, Z., Patil, A., Yu, R., Yang, Y., Zhu, S., Fan, X. & Hou, C. From molecular reconstruction of mesoscopic functional conductive silk fibrous materials to remote respiration monitoring. Small 16, 2000203 (2020).
17. Guo, R., Yu, D., Huang, Y., Wang, S., Fu, C., Zhu, S., Jia, Y., Wang, H. & Lin, Y. Improving physical properties of Poly (vinyl alcohol)/Montmorillonite Nanocomposite Hydrogels via the Hofmeister effect. Chin. Phys. B (2023).
版权所有:福州大学材料科学与工程学院
地址: 福建省福州市福州地区大学新区学园路2号 邮编: 350108 电话:0591-22866539
CopyRight 2011-2021 By All Rights Reserved.